Beyond the SM Models at the Tevatron and LHC

"A (brief and not unweighted) random walk through the theory landscape"

M. Perelstein, Cornell HCP 2008 Workshop, May 29 2008

Introduction

- Standard Model: Electroweak gauge symmetry
 SU(2)xU(1) is fundamental, but spontaneously broken at low energies down to e&m U(1)
- Uncovering the mechanism of electroweak symmetry breaking (EWSB) is the central question for the LHC
- The Standard Model explanation of EWSB: Higgs phenomenon
- Postulate a new particle the Higgs boson of spin
 0
- Vacuum is filled with Higgs condensate, which breaks the symmetry

Is the Higgs Really There?

 Standard Model with a light Higgs provides a good fit to all data, indirect determination of H mass:

$$M_H < 186 \text{ GeV} \quad (95\% \text{ c.l.})$$

Light Higgs → New Physics

 No elementary spin-0 particles are known to exist: scalar mass is unstable with respect to radiative corrections

• In SM,
$$V(H)=-\mu^2H^\dagger H+\lambda(H^\dagger H)^2$$

$$v^2=\frac{\mu^2}{\lambda},\quad m_h^2=2\mu^2$$

Renormalization:

$$\mu^2(M_{\text{ew}}) = \mu^2(\Lambda) + c_1 \frac{1}{16\pi^2} \Lambda^2 + c_2 \frac{1}{16\pi^2} \log\left(\frac{\Lambda}{M_{\text{ew}}}\right) + \text{finite}$$

with $c_1 \sim 1$ and Λ is the scale where loop integrals are cut off by new physics

• Expect $\mu \sim \Lambda/(4\pi)$ \longrightarrow $\Lambda \sim 1~{\rm TeV}$ (naturalness) [But NB: $\Lambda \sim 10~{\rm TeV}$ if [% fine-tuning is allowed!]

Thermal Dark Matter

- Dark matter (non-luminous, non-baryonic, non-relativistic matter) well-established by a variety of independent astro observations, ~20% of the universe
- None of the SM particles can be dark matter
- Assume new particle, in thermal equilibrium with the cosmic plasma in the early universe
- Measured DM density → interaction cross section DM-SM

$$\sigma \approx 1 \text{ pb} \sim \frac{\alpha}{(\text{TeV})^2}$$

independent hint for new physics at the TeV scale!

[figure: Birkedal, Matchev, MP, hep-ph/0403004]

Options for New Physics @ TeV

- Models with light Higgs, addressing naturalness:
 - New particles, related to SM by symmetry, cut off loops (ex. SUSY, Little Higgs, gauge-higgs unification)
 - Higgs not elementary, bound state resolved at ~TeV (ex. warped [Randall-Sundrum] extra dimensions)
 - Point-like SM particles resolved as TeV-scale strings (ex. large extra dimensions)
- Models without light Higgs, necessarily strongly-coupled at the TeV scale (ex.:Technicolor, Higgsless)
- Models that do not improve naturalness, but have other interesting features or unusual signatures (ex. hidden valley, unparticles)

Supersymmetry

- In supersymmetric theories scalar masses do not receive quadratic divergences
- SUSY not symmetry of nature must be broken
- "Soft" breaking at the TeV scale loops cut off at the TeV scale, naturalness restored
- "Minimal" supersymmetric SM (MSSM): superpartner for each SM d.o.f., plus 2nd Higgs doublet and its superpartners

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates	
Higgs bosons	0	+1	$H_u^0 \ H_d^0 \ H_u^+ \ H_d^-$	$h^0 \ H^0 \ A^0 \ H^{\pm}$	34 new particles waiti
squarks	0	-1	$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$	(same)	to be discovered!
			$\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$	(same)	
			$\widetilde{t}_L \ \widetilde{t}_R \ \widetilde{b}_L \ \widetilde{b}_R$	\widetilde{t}_1 \widetilde{t}_2 \widetilde{b}_1 \widetilde{b}_2	
sleptons	0	-1	$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{\nu}_e$	(same)	
			$\widetilde{\mu}_L \ \widetilde{\mu}_R \ \widetilde{ u}_\mu$	(same)	
			$\widetilde{ au}_L \ \widetilde{ au}_R \ \widetilde{ u}_{ au}$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ u}_{ au}$	
neutralinos	1/2	-1	\widetilde{B}^0 \widetilde{W}^0 \widetilde{H}_u^0 \widetilde{H}_d^0	\widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}_4	
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}_{u}^{+} \widetilde{H}_{d}^{-}	\tilde{C}_1^{\pm} \tilde{C}_2^{\pm}	
gluino	1/2	-1	\widetilde{g}	(same)	
goldstino (gravitino)	1/2 (3/2)	-1	\widetilde{G}	(same)	[toble: C. Mantin land - 1, /07002[/]

Table 7.1: The undiscovered particles in the Minimal Supersymmetric Standard Model (with sfermion mixing for the first two families assumed to be negligible).

[table: S. Martin, hep-ph/9709356]

MSSM and Its 100 Parameters

• Arbitrary soft terms \Longrightarrow O(100) free parameters, affecting spectrum, branching ratios, etc.

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} \left(M_3 \tilde{g} \tilde{g} + M_2 \tilde{W} \tilde{W} + M_1 \tilde{B} \tilde{B} + \text{c.c.} \right)$$

$$- \left(\tilde{u} \mathbf{a_u} \tilde{Q} H_u - \tilde{d} \mathbf{a_d} \tilde{Q} H_d - \tilde{e} \mathbf{a_e} \tilde{L} H_d + \text{c.c.} \right)$$

$$- \tilde{Q}^{\dagger} \mathbf{m_Q^2} \tilde{Q} - \tilde{L}^{\dagger} \mathbf{m_L^2} \tilde{L} - \tilde{u} \mathbf{m_u^2} \tilde{u}^{\dagger} - \tilde{d} \mathbf{m_d^2} \tilde{d}^{\dagger} - \tilde{e} \mathbf{m_e^2} \tilde{e}^{\dagger}$$

$$- m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (b H_u H_d + \text{c.c.}).$$

- Models of SUSY breaking "predict" some parameters (or relations among them), reduce the freedom
- But: Many such models (e.g. gravity mediation, gauge mediation, anomaly mediation, etc.), each has strengths and weaknesses, no clear "winner" emerged over ~25 years of model-building > NEED DATA!!!
- Search strategies must be designed with this in mind "cover" the I20-dimensional parameter space as well as
 experimental limitations allow

SUSY: Generic Predictions

- Extra discrete symmetry R parity imposed to avoid rapid proton decay (may be relaxed, but very artificial)
- All SM states R-even, superpartners R-odd lightest superpartner (LSP) stable
- Strong limits on colored/charged relics in the universe prefer neutral LSP (also a WIMP dark matter candidate!)
- Generic signature: missing energy in every event with superpartner production
- But NLSP may be stable on time scale relevant to a collider detector: $t \sim L/c \sim 10^{-8}~{\rm sec}\,!$ Searches for long-lived charged and colored objects (e.g. staus and R-hadrons) are also well motivated
- Inclusive search for stable (neutral or not) objects plus highpT jets and/or leptons is the best mod.-ind. strategy

The Importance of Inclusiveness

- Experiments like to present results of searches as limits on model parameters
- 100+ par. framework impractical choose a set of assumptions (mSUGRA most popular) to reduce to "a few"
- Advantage: Easy vocabulary to compare between experiments, both high-pT and others (g-2, EDMs, etc.)
- Disadvantage: Cuts optimized to maximize bounds in this framework, may miss a signal!!!

[Ex.: D0 squark/gluino search (Alwall et. al., 0803.0019)]

MSSM and Naturalness

- Non-observation of the Higgs at LEP2 presents a significant problem for the MSSM
- At tree level, a firm upper bound (ind. of 120 parameters) on the mass of the lighter CP-even Higgs boson: $m(h^0) < M_Z$
- Experimentally, $m(h^0) > 114 \text{ GeV}$ (except corners)
- Loop corrections to $m(h^0)$ must be large (25%)
- Same loops induce large corrections to Higgs vevs, which need to be canceled precisely - fine-tuning of O(1%)

[possible way out: Choi et al, hep-ph/0508029; Kitano, Nomura, hep-ph/0509039]

 If SUSY is realized, it may well be a non-minimal version (e.g. extra scalars coupled to the Higgs sector, non-standard Higgs phenomenology - see S. Chang's talk tomorrow)

Quantum Gravity at TeV

- At Planck scale, SM has to be embedded into a theory with quantum gravity string theory?
- It is believed that that theory must be finite all divergences cut off at $M_{
 m Pl}$
- If $M_{\rm Pl} \sim 1~{
 m TeV}$, there is no hierarchy problem!
- ADD model: SM on a 4D brane inside higher-D space, with extra dimensions compactified with

$$R \sim M_{\rm Pl}^{-1} \left(\frac{M_{\rm Pl,4}}{M_{\rm Pl}}\right)^{2/n} \gg M_{\rm Pl}^{-1}$$

- ullet At $E < M_{
 m Pl}$, model-independent missing energy signature due to graviton emission into the extra dimensions
- If two partons collide at super-plankian energies $E\gg M_{\rm Pl}$, a black hole must form (and decay promptly)

String Theory at TeV

- ullet Given existing constraints on $M_{
 m Pl}$, it seems pretty unlikely that the LHC will probe the region $E\gg M_{
 m Pl}$ [Meade, Randall, 0708:3017]
- In any (weakly coupled) string theory, Regge excitations of SM particles lie below Planck scale

$$M_n = \sqrt{n}M_S, \quad M_S \ll M_{\rm Pl}$$

 Reggeons appear as s-channel resonances in SM scattering processes!

- Distinguish from Zprimes etc.: spin $S = S_0 + n$, e.g. first "Regge gluon" is spin-2!
- Excited Reggeons have spin > 2 => at present not handled by general-purpose MC generators!

QCD Redux: Composite Higgs, Technicolor, and Their Cousins

All these models involve new strong dynamics at TeV (or 10 TeV), a la QCD confinement at GeV, but with interesting new twists!

Composite Higgs

- Many spin-0 particles exist in nature mesons
- They are composite, made of spin-1/2 quarks, bound by QCD strong force
- Above the QCD confinement scale, the good degrees of freedom are quarks no hierarchy problem!
- Can the Higgs be a meson bound by a new strong force?
- Old idea, but difficult to build models non-perturbative physics!
- New insight: AdS/CFT duality some strongly coupled 4D models are "dual" to weakly coupled, calculable models with an extra dimension!
- Setup: Randall-Sundrum (RS) 5D model

Warped (RS) Extra Dimension

 Original model had the SM on the TeV brane, solves the hierarchy problem

- New states: KK gravitons at the TeV scale
- Couplings: $\mathcal{L} \sim \frac{1}{({
 m TeV})^2} T_{\mu\nu} G^{\mu\nu}_{
 m KK}$

RS with Bulk Matter

 It was subsequently realized that models with SM gauge fields and fermions in the "bulk" are more interesting:

- natural solution to fermion mass hierarchy problem
- natural suppression of flavor-changing neutral currents
- possibility of gauge coupling unification, as in the MSSM

RS with Bulk Matter: Pheno

- Good: all SM states now have KK modes!
- Bad: the KKs do not couple to light quarks and leptons much...
- Worse: PEW constraints force KK masses > 3 TeV or so
- KK gluon is probably the easiest target at the LHC

Agashe et. al., hep-ph/0612015; Lillie et.al., hep-ph/0701166

Final state: A pair of highly-boosted tops ("top jets"?)

Gauge-Higgs Unification

- A zero-mass photon does not require fine-tuning mass is protected by gauge symmetry
- In a 5D theory, the gauge field $A_M(x) \to A_\mu(x), A_5(x)$
- If the 5th dimension is infinite, A_5 is naturally massless!
- After compactification, $m(A_5) \sim 1/R \Longrightarrow \text{good if } 1/R \sim M_W \sim M(W')$
- Higgs mass quadratic divergences are canceled by KK modes:

• A realistic GHU implementation, using a warped extra dimension, predicts $m_h < 140~{
m GeV}$ and KK states at 2 TeV

Little Higgs

Quadratic divergence cancellation by same-spin states can also occur in a purely 4D theory - Little Higgs

[LH ← effective theory of the first two KK modes in GHU!]

- In LH, Higgs is a Goldstone boson arising from a global symmetry breaking [a la pions in QCD]
- If the global symmetry is exact, $m_h = 0$ naturally!
- Goldstones only interact derivatively
 need to break the global symmetry explicitly by gauge and Yukawa interactions
- Generically explicit breaking reintroduces quadratic divergences
- "Collective" breaking pattern in LH avoids quad. div. at one loop

EWSB in Littlest Higgs Model

Higgs mass is dominated by top and Top loops:

This contribution is log-divergent and negative:

$$m_{\rm t}^2(H) = -\frac{3\lambda_t^2 M_T^2}{8\pi^2} \log \frac{\Lambda^2}{M_T^2} .$$

- All other contributions are generically subdominant
- EWSB is triggered radiatively simple mechanism!
- Similar to the MSSM but with no tree-level potential at all e.g. no μ problem!

Little Higgs and T Parity

- LH models are weakly coupled at the TeV scale, predictive!
- The "first-generation" LH models strongly disfavored by precision electroweak data
- Best solution: introduce "T Parity": new TeV-scale particles T-odd and only appear in loops in PEWO [a la R parity of the MSSM]
- Littlest Higgs with T Parity (LHT) passes PEW tests without significant fine-tuning

[Hubisz, Meade, Noble, MP, hep-ph/0506042]

LHT Collider Phenomenology

- The Lightest T-Odd Particle (LTP) is stable, typically the neutral, spin-I "heavy photon" - WIMP DM candidate
- Symmetry structure forces introduction of T-odd partners for each SM (weak doublet) fermion - "T-quarks" and "T-leptons"
- Hadron collider signature: T-quark production, decays to LTP+jets

[Carena, Hubisz, MP, Verdier, hep-ph/0610156]

Another "SUSY look-alike" candidate!

What if There is No Higgs?

- If physics at TeV scale is strongly coupled, a symmetry-breaking condensate can exist without a physical Higgs boson in the theory - technicolor!
- TC with QCD-like dynamics at TeV is strongly disfavored by precision electroweak data
- Difficult to explore model space due to strong coupling
- New insight: AdS/CFT duality some strongly coupled 4D models are "dual" to weakly coupled, calculable models with an extra dimension!
- 5D "Higgsless" models have been constructed, with EWSB by boundary conditions in RS-like setup, passes precision electroweak tests with ~1% fine-tuning
- Fermion masses can be straighforwardly incorporated

Higgsless Phenomenology

- Best place to search for all higgsless models is W/Z scattering
- Unitarity must be restored, typically resonances appear
- 5D Higgsless model predicts narrow, light (sub-TeV) resonances

[Birkedal, Matchev, MP, hep-ph/0412278]

Gold-Plated Channel: 2j+3l+Et_miss

Closing Remarks

- Since the SM became accepted (~30 years), theorists have been able to provide very precise guidance for new physics searches at the energy frontier (e.g.W, Z, top)
- This is **NOT** the case in the BSM physics hunt:
 - Number of "ideas" is finite (SUSY, xdim, TC, ...)
 - Number of "implementations" is essentially infinite
 - Number of "free parameters" in each implementation is typically large
- Inclusive (signature-based whenever possible) searches are the best bet
- "Model space" will evolve very quickly once there is evidence for BSM in the data!

Conclusions

- The mechanism which breaks electroweak symmetry remains a fundamental, unsolved mystery
- All natural models of EWSB predict new physics at the TeV scale
- Tevatron is at the frontier, discovery possible every day
- LHC is on its way!
- Lots of interesting possibilities exciting physics ahead!
- Widely open theory space brings challenges as well:
 - Making sure no new physics is missed (triggers, cuts)
 - Experiment-theory communication issues